Navegación

Búsqueda

Búsqueda avanzada

Aprendizaje automático y predicción de defectos en el software

Resumen:

La predicción de defectos de software es el proceso de desarrollo de modelos que pueden ser utilizados por los profesionales de software para detectar artefactos defectuosos. Existen numerosas técnicas de aprendizaje automático que se han propuesto e implementado como solución a este problema, pero en muchos casos los resultados son contradictorios y no se ha consensuado el conjunto de métricas que serán las variables de base en la predicción. En este trabajo se abordan dos tareas importantes en la aplicación de algoritmos de aprendizaje al problema de predicción de defenctos. Por una parte crear un método unificado para tratar este problema que sea generalizable a nuevos conjuntos de datos y/o que pueda incorporar nuevos algoritmos, así se podrán comparar los resultados de las distintas técnicas hayan sido probadas o no. Por otra parte, profundizamos en la selección de métricas relevantes en problema de la predicción de defectos software y proponemos un método de consenso en base a las relaciones identificadas en los datos. El método de comparación de técnicas y la selección de métricas se han probado experimentalmente sobre 5 conjuntos de datos. Los resultados obtenidos indican que las métricas relevantes en la predicción de defectos son una combinación de métricas de acoplamiento y tamaño.

Palabras Clave:

Análisis de Datos - Aprendizaje automático - Predicción de defectos del software

Autor(es):

Handle:

11705/JISBD/2019/042

Descargas:

Este artículo tiene una licencia de uso CreativeCommons - Reconocimiento (by)

Descarga el artículo haciendo click aquí.

Ver la referencia en formato Bibtex