Resumen:
El problema de selección de requisitos consiste en elegir un subconjunto de requisitos que serán desarrollados en la siguiente versión del producto software. Esta elección se debe hacer de tal forma que se maximice la satisfacción de los clientes y se minimice el coste de implementación, cumpliendo, además, con una serie de dependencias entre los requisitos. Tanto el coste de implementación de los requisitos como la satisfacción de los clientes están sujetos a incertidumbre y se pueden modelar mediante variables aleatorias. Como resultado, el coste total y el valor de una solución (subconjunto de requisitos) también son variables aleatorias. Un decisor normalmente prefiere soluciones robustas, es decir, con baja incertidumbre en sus valores objetivos. Esta preferencia se puede modelar minimizando la varianza de las variables aleatorias, a la vez que se optimizan sus valores promedios. En este trabajo presentamos una formulación robusta del problema de selección de requisitos con cuatro objetivos: los promedios del coste y satisfacción, y sus varianzas. Para resolver el modelo empleamos un resolutor de programación lineal entera que se aplica a una suma ponderada de los objetivos, obteniendo soluciones soportadas del frente de Pareto.