Búsqueda avanzada

Run-time prediction of business process indicators using evolutionary decision rules (Summary)


Summary of the contribution

Predictive monitoring of business processes is a challenging topic of process min- ing which is concerned with the prediction of process indicators of running pro- cess instances. The main value of predictive monitoring is to provide information in order to take proactive and corrective actions to improve process performance and mitigate risks in real time. In this paper, we present an approach for pre- dictive monitoring based on the use of evolutionary algorithms. Our method provides a novel event window-based encoding and generates a set of decision rules for the run-time prediction of process indicators according to event log properties. These rules can be interpreted by users to extract further insight of the business processes while keeping a high level of accuracy. Furthermore, a full software stack consisting of a tool to support the training phase and a framework that enables the integration of run-time predictions with business process man- agement systems, has been developed. Obtained results show the validity of our proposal for two large real-life datasets: BPI Challenge 2013 and IT Department of Andalusian Health Service (SAS).

Palabras Clave:

Business process indicator - Business Process Management - Evolutionary algorithm - Predictive mon- itoring - Process Mining





Este artículo tiene una licencia de uso CreativeCommons Reconocimiento (by)

Descarga el artículo haciendo click aquí.