Resumen:
We use graph transformation to define an adaptive component model, what allows us to carry on predictive analyses on dynamic architectures through simulations. Specifically, we build on the e-Motions definition of the Palladio component model, and then specify adaptation mechanisms as generic adaptation rules. We illustrate our approach with rules modelling the increase in the number of CPU replicas used by a component, and the distribution of works between processors, reacting, respectively, to saturated queues or response time constraints violations. We evaluate alternative scenarios by analysing their performance, and discuss on its consequences in practice.
Descargas:
Este artículo tiene una licencia de uso CreativeCommons Reconocimiento (by)
Descarga el artículo haciendo click aquí.
Ver la referencia en formato Bibtex
@inproceedings{prole:2017:012,
title={{Towards the model-based predictive performance analysis of Cloud adaptive systems with e-Motions (Trabajo en progreso)}},
author={Patricia de Oliveira and Francisco Dur{\'a}n and Ernesto Pimentel},
url={http://hdl.handle.net/11705/PROLE/2017/012},
booktitle={PROLE2017},
year={2017},
publisher={SISTEDES},
crossref={prole2017lalaguna}
}
@proceedings{prole2017lalaguna,
title={{Actas de las XVII Jornadas de Programaci{\'o}n y Lenguajes (PROLE 2017)}},
editor={Dur{\'a}n, F.},
booktitle={PROLE2017},
year={2017},
publisher={SISTEDES}
}
Copiar al portapapeles |
Cerrar