Navegación

Búsqueda

Búsqueda avanzada

El autor Isaac Lera ha publicado 3 artículo(s):

1 - Evaluation and efficiency comparison of evolutionary algorithms for service placement optimization in fog architectures

Los procesos de optimización de la ubicación de los servicios en infraestructuras Fog son de gran importancia dada la influencia en la calidad de los servicios y el rendimiento de la arquitectura. En estos entornos Fog, el proceso de optimización es de mayor complejidad debido al mayor tamaño y heterogeneidad de la arquitectura. Nos encontramos ante un problema NP-completo y multiobjetivo, que deber+AOE ser solucionado por algún método de optimización. En otros problemas relacionados, se ha puesto de manifiesto que el uso de los algoritmos genéticos es una solución habitual para optimizar estos procesos de asignación y optimización.Este trabajo compara el uso de tres algoritmos genéticos aplicados al problema de ubicación de servicios en nodos Fog. En particular, se estudian los algoritmos weighted sum genetic algorithm (WSGA), non-dominated sorting genetic algorithm II (NSGA-II), y multiobjective evolutionary algorithm based on decomposition (MOEA/D). El problema planteado considera que las aplicaciones están compuestas por un conjunto interrelacionados de módulos o servicios, y que cada uno de ellos puede ubicarse en nodos distintos de la arquitectura. El objetivo es optimizar la utilización de recursos, la dispersión geográfica de los servicios y la latencia de red en la ejecución de una aplicación.NSGA-II obtuvo los mejores resultados de optimización y de diversidad del espacio de soluciones, aunque para ello fue el que mostr+APM unos mayores tiempos de ejecución. Por el contrario, el algoritmo MOEA/D mostr+APM unos tiempos de ejecución más cortos, pero sin conseguir optimizar los tres criterios al mismo nivel que el NSGA-II. El algoritmo WSGA no destac+APM sobre los otros dos en ninguno de los aspectos analizados.

Autores: Carlos Guerrero / Isaac Lera / Carlos Juiz / 
Palabras Clave: Fog Computing - Genetic algorithm - Optimization - Service Placement

3 - Resource optimization of container orchestration: a case study in multi-cloud microservices-based applications (Summary)

Los microservicios han resultado ser un nuevo paradigma de programación adoptado ampliamente durante los últimos años. Consiste en desarrollar una aplicación mediante un conjunto de servicios ligeros e independientes que pueden desplegarse y escalarse en múltiples proveedores de cloud (multicloud). El uso de múltiples proveedores puede suponer una mayor ventaja en términos de coste y disponibilidad, entre otras, pero también conlleva riesgos asociados con la degradación del servicio. Por ello, el uso de políticas de asignación de recursos es importante para mitigar estos inconvenientes.

Este trabajo propone el uso de un algoritmo genético (Non-dominated Sorting Genetic Algorithm II, NSGA-II) para optimizar la asignación de microservicios a máquinas virtuales de cada uno de los proveedores, de forma que se consiga minimizar las siguientes métricas: el coste de despliegue; los tiempos de comunicación entre los microservicos de una misma aplicación debido a despliegues en distintos proveedores de cloud; y el tiempo medio de recuperación, es decir, el tiempo entre la caída y despliegue de una nueva instancia vuelva a estar operativa.

Mediante la simulación de distintos experimentos, hemos probado que la asignación de recursos con NSGA-II obtiene una mejor minimización de los objetivos evaluados junto a una mayor diversidad de soluciones de asignación de recursos, en comparación con un algoritmo voraz. Por tanto, el trabajo concluye que el uso del algoritmo genético (NSGA-II) es adecuado para mejorar la asignación de microservicios y máquinas virtuales en entornos multicloud.

Autores: Carlos Guerrero / Isaac Lera / Carlos Juiz / 
Palabras Clave: Cloud Computing - Container orchestration - Genetic algorithm - microservices - multi-objective optimization