Arquitecturas Software y Variabilidad
URI permanente para esta colección:
Artículos en la categoría Arquitecturas Software y Variabilidad publicados en las Actas de las XXV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2021).
Notificar un error en esta colección
Examinar
Envíos recientes
Artículo Teoría de Categorías Aplicada a VariabilidadMunoz Guerra, Daniel Jesus; Pinto, Mónica; Fuentes Fernandez, Lidia. Actas de las XXV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2021), 2021-09-22.La Teoría de Categorías es un álgebra abstracta que capta los componentes comunes de estructuras aparentemente diferentes. Sus principios organizadores pretenden remodelar y reformular problemas, facilitando su resolución y abriendo puertas a nuevas vías de investigación. En este trabajo analizamos su aplicabilidad a Modelos de Variabilidad con los objetivos de estandarizar su expresividad y expandir el conjunto tradicional de herramientas de razonamiento y optimización.Artículo Despliegue Energéticamente Eficiente de Aplicaciones Distribuidas en Infraestructuras en el Borde HeterogéneasCanete, Angel; Rodríguez, Alberto; Fuentes Fernandez, Lidia; Amor, Mercedes. Actas de las XXV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2021), 2021-09-22.Para disminuir la latencia y el consumo energético de las aplicaciones de usuario, paradigmas como el Edge Computing proponen delegar cierta carga computacional, que normalmente se ejecutaría en el dispositivo del cliente o en la Nube, a dispositivos situados en el borde de la red. Esto permite tanto optimizar la ejecución de las aplicaciones, como descongestionar la red al disminuir la cantidad de datos que se envían para su procesamiento en la Nube. Para hacer una asignación óptima de tareas a dispositivos es necesario considerar las capacidades y recursos de los dispositivos y los requisitos de las aplicaciones para determinar qu+AOk dispositivos serán los encargados de ejecutar cada tarea de la aplicación. En este trabajo se presenta una solución para la asignación óptima de tareas a dispositivos del borde cuyo objetivo es minimizar el consumo energético de la ejecución de las aplicaciones mientras considera los requisitos de la aplicación. Nuestro modelo de selección de dispositivos se integra con herramientas de virtualización ligera y orquestación de contenedores ampliamente utilizadas en la industria, ofreciendo alta disponibilidad y tolerancia a fallos. Aplicamos nuestra propuesta al despliegue de una aplicación de realidad aumentada en una infraestructura de nodos heterogéneos, obteniendo una reducción del consumo de la aplicación del 83+ACU comparado con la asignación por defecto del orquestador Kubernetes.Artículo Arquitectura de Referencia de Seguridad para BlockchainOrtega Canalejo, Maria Isabel; Moreno, Julio; Serrano Martín, Manuel Ángel; Fernandez-Medina, Eduardo. Actas de las XXV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2021), 2021-09-22.La seguridad de la tecnología blockchain est+AOE más que nunca en el punto de mira. Constantemente se identifican ataques a DLTs (Distributed Ledger Technology), incluyendo blockchain, que ponen de manifiesto la necesidad de reforzar la seguridad de éstas. El uso de arquitecturas de seguridad de re-ferencia (SRA) ha demostrado ser útil para abordar la seguridad en las pri-meras fases del desarrollo facilitando la definición de requisitos de seguri-dad y ayudando a implementar políticas de seguridad que nos permitan pro-teger un sistema durante todo el ciclo de vida. En este artículo se presenta una SRA para la tecnología blockchain definida mediante modelos y com-probado su aplicación mediante un ejemplo de uso.Resumen Process Mining to Unleash Variability Management: Discovering Configuration Workflows Using LogsVarela Vaca, Ángel Jesús; Galindo, José A.; Ramos, Belén; Gómez-López, María Teresa; Benavides Cuevas, David Felipe. Actas de las XXV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2021), 2021-09-22.Variability models are used to build configurators. Configurators are programs that guide users through the configuration process to reach a desired configuration that fulfils user requirements. The same variability model can be used to design different configurators employing different techniques. One of the elements that can change in a configurator is the configuration workflow, i.e., the order and sequence in which the different configuration elements are presented to the configuration stakeholders. When developing a configurator, a challenge is to decide the configuration workflow that better suites stakeholders according to previous configurations. For example, when configuring a Linux distribution, the configuration process start by choosing the network or the graphic card, and then other packages with respect to a given sequence. In this paper, we present COLOSSI, an automated technique that given a set of logs of previous configurations and a variability model can automatically assist to determine the configuration workflow that better fits the configuration logs generated by user activities. The technique is based on process discovery, commonly used in the process mining area, with an adaptation to configuration contexts. Our proposal is validated using existing data from an ERP configuration environment showing its feasibility. Furthermore, we open the door to new applications of process mining techniques in different areas of software product line engineering.Resumen AMADEUS: Towards the AutoMAteD secUrity teStingVarela Vaca, Ángel Jesús; Gasca, Rafael M.; Carmona-Fombella, José Antonio; Gómez-López, María Teresa. Actas de las XXV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2021), 2021-09-22.The proper configuration of systems has become a fundamental factor to avoid cybersecurity risks. Thereby, the analysis of cybersecurity vulnerabilities is a mandatory task, but the number of vulnerabilities and system configurations that can be threatened is extremely high. In this paper, we propose a method that uses software product line techniques to analyse the vulnerable configuration of the systems. We propose a solution, entitled AMADEUS, to enable and support the automatic analysis and testing of cybersecurity vulnerabilities of configuration systems based on feature models. AMADEUS is a holistic solution that is able to automate the analysis of the specific infrastructures in the organisations, the existing vulnerabilities, and the possible configurations extracted from the vulnerability repositories. By using this information, AMADEUS generates automatically the feature models, that are used for reasoning capabilities to extract knowledge, such as to determine attack vectors with certain features. AMADEUS has been validated by demonstrating the capacities of feature models to support the threat scenario, in which a wide variety of vulnerabilities extracted from a real repository are involved. Furthermore, we open the door to new applications where software product line engineering and cybersecurity can be empowered.Resumen Empirical software product line engineering: A systematic literature review. An IST journal publicationChacón-Luna, Ana Eva; Gutiérrez-Fernández, Antonio Manuel; Galindo, José A.; Benavides Cuevas, David Felipe. Actas de las XXV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2021), 2021-09-22.The adoption of Software Product Line Engineering (SPLE) is usually only based on its theoretical benefits instead of empirical evidences. In fact, there is no work that synthesizes the empirical studies on SPLE. This makes it difficult for researchers to base their contributions on previous works validated with an empirical strategy. The objective of this work is to discover and summarize the studies that have used empirical evidences in SPLE limited to those ones with the intervention of humans. This will allow evaluating the quality and to know the scope of these studies over time. Doing so, research opportunities can arise. A systematic literature review was conducted. The scope of the work focuses on those studies in which there is human intervention and were published between 2000 and 2018. We considered peer-reviewed papers from journals and top software engineering conferences. Out of a total of 1880 studies in the initial set, a total of 62 primary studies were selected after applying a series of inclusion and exclusion criteria. We found that, approximately 56+AFwAJQ of the studies used the empirical case study strategy while the rest used experimental strategies. Around 86+AFwAJQ of the case studies were performed in an industrial environment showing the penetration of SPLE in industry. The interest of empirical studies has been growing since 2008. Around 95.16+AFwAJQ of the studies address aspects related to domain engineering while application engineering received less attention. Most of the experiments and case study evaluated showed an acceptable level of quality. The first study found dates from 2005 and since then, the interest in the empirical SPLE has increased.Artículo The MIRoN Project — Endowing robots with context-awareness and self-adaptation capabilitiesInglés-Romero, Juan F.; Salles de Freitas, Renan; Romero-Garcés, Juan Adrian; Bandera, Antonio J.; Martínez Cruz, Jesús; Lozano-Pinilla, José Ramón; García-Pérez, Daniel; Vicente-Chicote, Cristina. Actas de las XXV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2021), 2021-09-22.Dealing with variability in open-ended environments requires robots to adapt themselves according to the perceived situation in order to achieve the required quality of service (defined in terms of safety,performance or energy consumption, among other criteria). In this sense,context awareness and runtime self-adaptation allows moving autonomous robot navigation one step forward. The ambition of theMIRoNProjectwas to provide a complete framework enabling designers to endow robots with the ability of self-adapting their course of action at runtime, according to the external and internal context information available. Our proposal relies on the systematic use of models for dynamically reconfiguring the robot behavior, defined in terms of Behavior Trees, according to the runtime prediction and estimation of quality of service metrics based on system-level non-functional properties.Artículo Una herramienta para aplicar técnicas de Montecarlo al análisis de modelos de característicasHorcas Aguilera, José Miguel; Márquez Trujillo, Antonio Germán; Galindo, José A.; Benavides Cuevas, David Felipe. Actas de las XXV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2021), 2021-09-22.La mayoría de los sistemas configurables describen un amplio espacio de soluciones que hacen intratable su exploración exhaustiva. En la literatura encontramos técnicas de análisis como la resolución SAT o la programación de restricciones. Sin embargo, ninguna de ellas ha explorado los métodos basados en la simulación de la toma de decisiones cuando configuramos un sistema. Nosotros proponemos usar el método de Montecarlo el cual simula la búsqueda en espacios de soluciones colosales de manera aleatoria. Este trabajo presenta la implementación de un marco conceptual que aborda varios de esos análisis utilizando métodos de Montecarlo, los cuales, han demostrado tener éxito en otros dominios con espacios de búsqueda colosales como la teoría de juegos. Concretamente presentamos una implementación en Python del marco de trabajo que muestra la viabilidad de nuestra propuesta con la que prevemos que se pueden abordar diferentes problemas y que nuestro marco pueda utilizarse para avanzar el estado del arte.Artículo Re-ingeniería y Modernización de la Biblioteca Virtual GalegaRamos-Vidal, Delfina; Cortiñas, Alejandro; Rodríguez Luaces, Miguel; Pedreira, Oscar; Saavedra Places, Ángeles. Actas de las XXV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2021), 2021-09-22.La Biblioteca Virtual Galega (BVG) es una biblioteca digital de referencia en literatura gallega de todos los tiempos, para el público general y especialmente para centros de educación de enseñanza obligatoria de la comunidad. Esta plataforma almacena y da acceso a información bibliográfica de autores clásicos y actuales, as+AO0 como información multimedia correspondiente a ediciones digitales de sus obras. En este artículo se presenta el proyecto de re-ingeniería y modernización de esta biblioteca digital (desarrollada en 2002) utilizando una línea de producto software para la generación de bibliotecas digitales desarrollada por investigadores del Laboratorio de Bases de Datos (LBD).Resumen Comparing manual and automated feature location in conceptual models: A Controlled experimentPérez, Francisca; Echeverría, Jorge; Lapeña, Raúl; Cetina Englada, Carlos. Actas de las XXV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2021), 2021-09-22.Context: Maintenance activities cannot be completed without locating the set of software artifacts that realize a particular feature of a software system. Manual Feature Location (FL) is widely used in industry, but it becomes challenging (time-consuming and error prone) in large software repositories. To reduce manual efforts, automated FL techniques have been proposed. Research efforts in FL tend to make comparisons between automated FL techniques, ignoring manual FL techniques. Moreover, existing research puts the focus on code, neglecting other artifacts such as models. Objective: This paper aims to compare manual FL against automated FL in models to answer important questions about performance, productivity, and satisfaction of both treatments. Method: We run an experiment for comparing manual and automated FL on a set of 18 subjects (5 experts and 13 non-experts) in the domain of our industrial partner, BSH, manufacturer of induction hobs for more than 15 years. We measure performance (recall, precision, and F-measure), productivity (ratio between F-measure and spent time), and satisfaction (perceived ease of use, perceived usefulness, and intention to use) of both treatments, and perform statistical tests to assess whether the obtained differences are significant. Results: Regarding performance, manual FL significantly outperforms automated FL in precision and F-measure (up to 27.79+ACU and 19.05+ACU, respectively), whereas automated FL significantly outperforms manual FL in recall (up to 32.18+ACU). Regarding productivity, manual FL obtains 3.43+ACU-/min, which improves automated FL significantly. Finally, there are no significant differences in satisfaction for both treatments. Conclusions: The findings of our work can be leveraged to advance research to improve the results of manual and automated FL techniques. For instance, automated FL in industry faces issues such as low discrimination capacity. In addition, the obtained satisfaction results have implications for the usage and possible combination of manual, automated, and guided FL techniques.Resumen Uniform and Scalable SAT-Sampling for Configurable SystemsHeradio, Ruben; Fernandez-Amoros, David; Galindo, José A.; Benavides Cuevas, David Felipe. Actas de las XXV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2021), 2021-09-22.Several relevant analyses on configurable software systems remain intractable because they require examining vast and highly-constrained configuration spaces. Those analyses could be addressed through statistical inference, i.e., working with a much more tractable sample that later supports generalizing the results obtained to the entire configuration space. To make this possible, the laws of statistical inference impose an indispensable requirement: each member of the population must be equally likely to be included in the sample, i.e., the sampling process needs to be +AGAAYA-uniform''. Various SAT-samplers have been developed for generating uniform random samples at a reasonable computational cost. Unfortunately, there is a lack of experimental validation over large configuration models to show whether the samplers indeed produce genuine uniform samples or not. This paper (i) presents a new statistical test to verify to what extent samplers accomplish uniformity and (ii) reports the evaluation of four state-of-the-art samplers: Spur, QuickSampler, Unigen2, and Smarch. According to our experimental results, only Spur satisfies both scalability and uniformity.