Artículo:
Evaluating Embedded Relational Databases for Large Model Persistence and Query

Fecha

2016-09-13

Editor

Sistedes

Publicado en

Actas de las XXI Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2016)

Licencia Creative Commons

Resumen

Large models are increasingly used in Model Driven Development. Different studies have proved that XMI (default persistence in Eclipse Modelling Framework) has some limitations when operating with large models. To overcome them, recent approaches have used databases for persistence of models. EDBM (Embedded DataBase for Models) is an approach for persisting models in an embedded relational database, which provides scalable querying mechanism by runtime translation of model-level queries to SQL. In this paper, we present an evaluation of EDBM in terms of scalability with existing approaches. GraBaTs 2009 case study (models from 8.8MB to 646MB) is used for evaluation. EDBM is 70% faster than compared approaches to persist XMI GraBats models into databases and executes the GraBats query faster, as well as having a low memory usage. These results indicate that embedded relational database, combined with a scalable query mechanism provide a promising alternative for persisting and querying large models.

Descripción

Acerca de De Carlos, Xabier

Palabras clave

Página completa del ítem
Notificar un error en este artículo
Mostrar cita
Mostrar cita en BibTeX
Descargar cita en BibTeX