Artículo:
AYNEC-DataGen: a tool for generating evaluation datasets for Knowledge Graphs completion

Fecha

2019-09-02

Editor

Sistedes

Publicado en

Actas de las XXIV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2019)

Licencia Creative Commons

Resumen

In the context of knowledge graphs, the task of completion of relations consists in adding missing triples to a knowledge graph, usually by classifying potential candidates as true of false. Creating an evaluation dataset for these techniques is not trivial, since there is a large amount of variables to consider which, if not taken into account, may cause misleading results. So far, there is not a well defined workflow that identifies the variation points when creating a dataset, and what are the possible strategies that can be followed in each step. Furthermore, there are no tools that help create such datasets in an easy way. To address this need, we have created AYNEC-DataGen, a customisable tool for the generation of datasets with multiple variation points related to the preprocessing of the original knowledge graph, the splitting of triples into training and testing sets, and the generation of negative examples. The output of our tool includes the evaluation dataset, an optional export in an open format for its visualisation, and additional files with metadata. Our tool is freely available online.

Descripción

Acerca de Ayala, Daniel

Palabras clave

Evaluation, Graph Refinement, Knowledge Graph, Tool
Página completa del ítem
Notificar un error en este artículo
Mostrar cita
Mostrar cita en BibTeX
Descargar cita en BibTeX