Autor:
Pérez, Jesús

Cargando...
Foto de perfil
E-mails conocidos
j.perezmar@posgrado.uimp.es
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Pérez
Nombre de pila
Jesús
Nombre
Nombres alternativos
Afiliaciones conocidas
University of Castilla-La Mancha, Spain
Páginas web conocidas
Página completa del ítem
Notificar un error en este autor

Resultados de la búsqueda

Mostrando 1 - 1 de 1
  • Artículo
    Tuning Neural Networks in a Fuzzy Logic Programming Environment
    Moreno, Ginés; Pérez, Jesús; Riaza Valverde, José Antonio. Actas de las XIX Jornadas de Programación y Lenguajes (PROLE 2019), 2019-09-02.
    Wide datasets are usually used for training and validating neural networks, which can be later tuned in order to correct their behaviors according to a few number of test cases proposed by users. In this paper we show how the FLOPER system developed in our research group is able to perform this last task after coding a neural network with a fuzzy logic language where program rules extend the classical notion of clause by including on their bodies both fuzzy connectives (useful for modeling activation functions of neurons) and truth degrees (associated to weights and bias in neural networks). We present an online tool which helps to select such operators and values in an automatic way, accomplishing with our recent technique for tuning this kind of fuzzy programs. Moreover, we provide some experimental results revealing that our tool generates the choices that better fit user's preferences in a very efficient way, and producing relevant improvements on tuned neural networks.