Autor:
Hurtado-Torres, María Visitación

Cargando...
Foto de perfil

E-mails conocidos

mhurtado@ugr.es

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Puesto de trabajo

Apellidos

Hurtado-Torres

Nombre de pila

María Visitación

Nombre

Nombres alternativos

Hurtado Torres, María Visitación

Afiliaciones conocidas

ETSIIT, Universidad de Granada, Spain
Universidad de Granada, Spain
University of Granada, Spain

Páginas web conocidas

Página completa del ítem
Notificar un error en este autor

Resultados de la búsqueda

Mostrando 1 - 1 de 1
  • Artículo
    Dy-MIoT-Health: A Dynamic Mobile Internet of Thing Health Platform Based on Discovery Services and Edge Computing
    Rodríguez-Fórtiz, María José; Garrido, José Luis; Rodríguez-Almendros, María Luisa; Hurtado-Torres, María Visitación; Hornos, Miguel J.; García-Moreno, Francisco Manuel; Bermúdez-Edo, María. Actas de las XVIII Jornadas de Ciencia e Ingeniería de Servicios (JCIS 2023), 2023-09-12.
    We have previously developed an IoT platform for monitoring elderly people. Now, we propose extending it with dynamicity through two new functionalities: 1) A dynamic discovery service that discovers nearby sensors and selects them according to the specific application, context information, and data provenance; and 2) A functionality that dynamically decides whether to deploy a task/service at the edge or the cloud according to context information (e.g., computing capacity, device storage, gateway, battery shortage, redundancy in sensors used, and data collected). To validate our proposal, we propose a use case to detect stress and anxiety during activities of daily living (ADLs) in elderly people, analyzing differences between people’s age and gender, chronic stress, and coping styles (emotional reactions to crises), among others. We will collect data from physiological sensors, cortisol tests, and questionnaires. Then we will analyze these data with machine learning techniques. The analysis results will help psychologists and health professionals to personalize the detection of outbreaks and interventions based on our results (differences between ages, gender, etc.).