Autor:
Navarro, Gonzalo

Cargando...
Foto de perfil

E-mails conocidos

Universidad de Chile
gnavarro@dcc.uchile.cl

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Puesto de trabajo

Apellidos

Navarro

Nombre de pila

Gonzalo

Nombre

Nombres alternativos

Afiliaciones conocidas

University of Chile, Chile
Universidad de Chile, Chile
gnavarro@dcc.uchile.cl
University of Chile

Páginas web conocidas

Página completa del ítem
Notificar un error en este autor

Resultados de la búsqueda

Mostrando 1 - 1 de 1
  • Artículo
    Universal indexes for highly repetitive document collections
    Claude, Francisco; Fariña, Antonio; Martínez-Prieto, Miguel A.; Navarro, Gonzalo. Actas de las XXII Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2017), 2017-07-19.
    Abstract ======== Indexing highly repetitive collections has become a relevant problem with the emergence of large repositories of versioned documents, among other applications. These collections may reach huge sizes, but are formed mostly of documents that are near-copies of others. Traditional techniques for indexing these collections fail to properly exploit their regularities in order to reduce space. We introduce new techniques for compressing inverted indexes that exploit this near-copy regularity. They are based on run-length, Lempel-Ziv, or grammar compression of the differential inverted lists, instead of the usual practice of gap-encoding them. We show that, in this highly repetitive setting, our compression methods significantly reduce the space obtained with classical techniques, at the price of moderate slowdowns. Moreover, our best methods are universal, that is, they do not need to know the versioning structure of the collection, nor that a clear versioning structure even exists. We also introduce compressed self-indexes in the comparison. These are designed for general strings (not only natural language texts) and represent the text collection plus the index structure (not an inverted index) in integrated form. We show that these techniques can compress much further, using a small fraction of the space required by our new inverted indexes. Yet, they are orders of magnitude slower. Publication Details =================== Francisco Claude, Antonio Fariña, Miguel A. Martínez-Prieto, Gonzalo Navarro. Universal indexes for highly repetitive document collections Information Systems, 61, pp. 1-23, 2016, DOI: http://dx.doi.org/10.1016/j.is.2016.04.002 Citations Google Scholar: 3 (2 self-citations)