Autor:
Correas, Jesús

Cargando...
Foto de perfil

E-mails conocidos

jcorreas@fdi.ucm.es

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Puesto de trabajo

Apellidos

Correas

Nombre de pila

Jesús

Nombre

Nombres alternativos

Afiliaciones conocidas

DSIC, Madrid, Spain Complutense University of Madrid (UCM)

Páginas web conocidas

Página completa del ítem
Notificar un error en este autor

Resultados de la búsqueda

Mostrando 1 - 1 de 1
  • Artículo
    Metapredicate Optimization for Datalog Queries through Program Analysis
    Bueno, Francisco; Correas, Jesús; Saenz-Perez, Fernando. Actas de las XVI Jornadas de Programación y Lenguajes (PROLE 2016), 2016-09-02.
    Some systems extend Datalog in order to allow the use of constructions in which several queries are composed to produce the set of resulting tuples. These constructions include outer joins, aggregate and grouping predicates, as well as, to some extent, negation. Typically, the result of such constructions depends on the subset of the tuples in the sets initially computed. In order to optimize for efficiency these compound queries, it would be interesting to determine in advance the subsets involved in the compound construct. Static analysis can be used at compile-time to infer an over-approximation of such subsets. Very precise abstract interpretation-based static analyzers have been developed for logic languages, and in particular the use of type domains allow to infer descriptive types for the arguments of a given predicate. Using the extensional description of the types inferred, the Datalog program can then be transformed to use the inferred subsets instead of the original queries. Here, we propose a source-to-source transformation of Datalog programs based on static analysis for optimizing queries involving outer join, negation, aggregate and grouping predicates. This approach has been tested in the DES system, using CiaoPP (a language preprocessor for Prolog) for inferring descriptive types. Some preliminary experiments show promising results.