Autor:
Chapela-Campa, David

Cargando...
Foto de perfil

E-mails conocidos

david.chapela@usc.es

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Puesto de trabajo

Apellidos

Chapela-Campa

Nombre de pila

David

Nombre

Nombres alternativos

Afiliaciones conocidas

Centro Singular de Investigación en Tecnoloxías Intelixentes, Universidade de Santiago de Compostela, Spain
Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS) Universidade de Santiago de Compostela. Santiago de Compostela, Spain
Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS)

Páginas web conocidas

Página completa del ítem
Notificar un error en este autor

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Artículo
    Towards the Extraction of Frequent Patterns in Complex Process Models
    Chapela-Campa, David; Mucientes, Manuel; Lama Penin, Manuel. Actas de las XIII Jornadas de Ciencia e Ingeniería de Servicios (JCIS 2017), 2017-07-19.
    In this paper, we present WoMine, an algorithm to retrieve frequent behavioural patterns from the model. Our approach searches in process models extracting structures with sequences, selections, parallels and loops, which are frequently executed in the logs. This proposal has been validated with a set of process models, and compared with the state of the art techniques. Experiments have validated that WoMine can find all types of patterns, extracting information that cannot be mined with the state of the art techniques.
  • Artículo
    Pattern-based Simplification of Process Models
    Chapela-Campa, David; Mucientes, Manuel; Lama Penin, Manuel. Actas de las XV Jornadas de Ciencia e Ingeniería de Servicios (JCIS 2019), 2019-09-02.
    Several simplification techniques have been proposed to deal with the understanding of complex process models, from the structural simplification of the model to the simplification of the log to discover simpler process models. But obtaining a comprehensible model explaining the behaviour of unstructured large processes is still an open challenge. In this paper, we present a novel algorithm to simplify process models by abstracting the infrequent behaviour in the logs.