Autor:
Navarro, Álvaro

Cargando...
Foto de perfil

E-mails conocidos

alvaro.nl@dlsi.ua.es

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Puesto de trabajo

Apellidos

Navarro

Nombre de pila

Álvaro

Nombre

Nombres alternativos

Afiliaciones conocidas

University of Alicante, Spain

Páginas web conocidas

Página completa del ítem
Notificar un error en este autor

Resultados de la búsqueda

Mostrando 1 - 1 de 1
  • Artículo
    Proceso para la evaluación de la equidad en sistemas de Inteligencia Artificial
    Navarro, Álvaro; Lavalle, Ana; Maté, Alejandro; Trujillo, Juan. Actas de las XXVIII Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2024), 2024-06-17.
    Pese a la relevancia de los sistemas de Inteligencia Artificial (IA) y los modelos de aprendizaje automático (ML) en la sociedad, dichos sistemas y modelos a menudo están limitados por la opacidad en su toma de decisiones. Este punto es clave, pues la falta de interpretabilidad puede suponer que se tomen decisiones injustas de manera oculta, lo que impediría tomar acciones correctivas para solucionar el problema. Aunque diferentes trabajos han afrontado el desafío de la opacidad desde un punto de vista explicable, hay una carencia de propuestas que traten de explote la información de los datos para este fin. En este contexto, y para ayudar al experto en ML en el análisis y la toma de decisiones, presentamos un proceso basado en un algoritmo jerárquico, denominado Árbol de Detección de Equidad (ADE), el cual recorre recursivamente los datos para crear un árbol de análisis (AAE). Combinado con técnicas de explicabilidad, unimos las características de los grupos a las decisiones del modelo, proporcionando a través del AAE información que puede mejorar la confianza en los resultados y propiciar una mejor comprensión del proceso de toma de decisiones del modelo. Las principales contribuciones de este trabajo son: (i) definimos métricas de equidad que tienen en cuenta conjuntos de datos reducidos y/o desbalanceados; (ii) analizamos automáticamente el conjunto de datos explotando los pesos extraídos del modelo; e (iii) identificamos grupos cuyo trato ha sido potencialmente injusto. Para demostrar la aplicabilidad de nuestra propuesta, analizamos su efectividad en cuatro dominios distintos.