Autor: Bermúdez-Edo, María
Cargando...
E-mails conocidos
mbe@ugr.es
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Bermúdez-Edo
Nombre de pila
María
Nombre
Nombres alternativos
Bermudez-Edo, Maria
Afiliaciones conocidas
University of Granada, Spain
University of Granada, United Kingdom
University of Granada, United Kingdom
Páginas web conocidas
Página completa del ítem
Notificar un error en este autor
2 resultados
Resultados de la búsqueda
Mostrando 1 - 2 de 2
Artículo Una Arquitectura Orientada a Microservicios y Dirigida por Eventos para el Desarrollo de Sistemas de eSalud Avanzados: Caso de Evaluación de Fragilidad en MayoresGarcía-Moreno, Francisco Manuel; Bermúdez-Edo, María; Rodríguez-Fórtiz, María José; Garrido, José Luis. Actas de las XV Jornadas de Ciencia e Ingeniería de Servicios (JCIS 2019), 2019-09-02.En el presente trabajo se presenta una propuesta tecnológica para eSalud de una arquitectura basada en microservicios, que pueden ser desplegados en dispositivos móviles, wearables y cloud, para evaluar el riesgo de fragilidad de las personas mayores. Dicha propuesta es extensible a otros dominios de problemas del Internet of Things (IoT) dentro del ámbito de la eSalud ya que el patrón de diseño de arquitecturas basadas en microservicios contribuye al desarrollo de sistemas informáticos desacoplados y extensibles. Además, el protocolo Message Queue Telemetry Transport (MQTT) utilizado en IoT favorece el bajo consumo y la no sobrecarga de la red, por lo que incorporar nuevos dispositivos wearables al sistema para recolectar datos de sus sensores se realizaría con poco esfuerzo.Artículo A machine learning approach for semi-automatic assessment of IADL dependence in older adults with wearable sensorsGarcía-Moreno, Francisco Manuel; Bermúdez-Edo, María; Rodríguez-García, Estefanía; Pérez Mármol, José Manuel; Garrido, José Luis; Rodríguez-Fórtiz, María José. Actas de las XVII Jornadas de Ciencia e Ingeniería de Servicios (JCIS 2022), 2022-09-05.Background and Objective: The assessment of dependence in older adults currently requires a manual collection of data taken from questionnaires. This process is time consuming for the clinicians and intrudes the daily life of the elderly. This paper aims to semi-automate the acquisition and analysis of health data to assess and predict the dependence in older adults while executing one instrumental activity of daily living (IADL). Methods: In a mobile-health (m-health) scenario, we analyze whether the acquisition of data through wearables during the performance of IADLs, and with the help of machine learning techniques could replace the traditional questionnaires to evaluate dependence. To that end, we collected data from wearables, while older adults do the shopping activity. A trial supervisor (TS) labelled the different shopping stages (SS) in the collected data. We performed data pre-processing techniques over those SS and analyzed them with three machine learning algo- rithms: k-Nearest Neighbors (k-NN), Random Forest (RF) and Support Vector Machines (SVM). Results: Our results confirm that it is possible to replace the traditional questionnaires with wearable data. In particular, the best learning algorithm we tried reported an accuracy of 97\% in the assessment of dependence. We tuned the hyperparameters of this algorithm and used embedded feature selection technique to get the best performance with a subset of only 10 features out of the initial 85. This model considers only features extracted from four sensors of a single wearable: accelerometer, heart rate, electrodermal activity and temperature. Although these features are not observational, our current proposal is semi-automatic, because it needs a TS labelling the SS (with a smartphone application). In the future, this labelling process could be automatic as well. Conclusions: Our method can semi-automatically assess the dependence, without disturbing daily activities of elderly people. This method can save clinicians’ time in the evaluation of dependence in older adults and reduce healthcare costs.