Autor:
Pérez Mármol, José Manuel

Cargando...
Foto de perfil

E-mails conocidos

josemapm@ugr.es

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Puesto de trabajo

Apellidos

Pérez Mármol

Nombre de pila

José Manuel

Nombre

Nombres alternativos

Pérez-Mármol, José Manuel

Afiliaciones conocidas

University of Granada, Spain

Páginas web conocidas

Página completa del ítem
Notificar un error en este autor

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Artículo
    A machine learning approach for semi-automatic assessment of IADL dependence in older adults with wearable sensors
    García-Moreno, Francisco Manuel; Bermúdez-Edo, María; Rodríguez-García, Estefanía; Pérez Mármol, José Manuel; Garrido, José Luis; Rodríguez-Fórtiz, María José. Actas de las XVII Jornadas de Ciencia e Ingeniería de Servicios (JCIS 2022), 2022-09-05.
    Background and Objective: The assessment of dependence in older adults currently requires a manual collection of data taken from questionnaires. This process is time consuming for the clinicians and intrudes the daily life of the elderly. This paper aims to semi-automate the acquisition and analysis of health data to assess and predict the dependence in older adults while executing one instrumental activity of daily living (IADL). Methods: In a mobile-health (m-health) scenario, we analyze whether the acquisition of data through wearables during the performance of IADLs, and with the help of machine learning techniques could replace the traditional questionnaires to evaluate dependence. To that end, we collected data from wearables, while older adults do the shopping activity. A trial supervisor (TS) labelled the different shopping stages (SS) in the collected data. We performed data pre-processing techniques over those SS and analyzed them with three machine learning algo- rithms: k-Nearest Neighbors (k-NN), Random Forest (RF) and Support Vector Machines (SVM). Results: Our results confirm that it is possible to replace the traditional questionnaires with wearable data. In particular, the best learning algorithm we tried reported an accuracy of 97\% in the assessment of dependence. We tuned the hyperparameters of this algorithm and used embedded feature selection technique to get the best performance with a subset of only 10 features out of the initial 85. This model considers only features extracted from four sensors of a single wearable: accelerometer, heart rate, electrodermal activity and temperature. Although these features are not observational, our current proposal is semi-automatic, because it needs a TS labelling the SS (with a smartphone application). In the future, this labelling process could be automatic as well. Conclusions: Our method can semi-automatically assess the dependence, without disturbing daily activities of elderly people. This method can save clinicians’ time in the evaluation of dependence in older adults and reduce healthcare costs.
  • Artículo
    Evaluación de emociones y salud emocional en mayores mediante wearables y Machine Learning
    García-Moreno, Francisco Manuel; Bermúdez-Edo, María; Garrido, José Luis; Pérez Mármol, José Manuel; Rodríguez-Fórtiz, María José. Actas de las XVII Jornadas de Ciencia e Ingeniería de Servicios (JCIS 2022), 2022-09-05.
    La población en los países desarrollados está envejeciendo, lo cual repercute en un alto gasto a nivel sociosanitario. Si se detectan prematuramente algunos de los primeros síntomas del declive de las personas mayores (por ejemplo, fragilidad o dependencia) se podrían frenar o retardar. En la actualidad, los profesionales de la salud evalúan a los mayores a través de cuestionarios y pruebas de fuerza o marcha centrados en la dimensión física. Los sensores se utilizan cada vez más para medir y monitorizar diferentes indicadores de salud mientras el usuario está realizando Actividades de la Vida Diaria (AVDs). En este trabajo presentamos un sistema basado en una arquitectura de microservicios que recolecta datos sensoriales mientras los adultos mayores realizan AVD, y con los que construimos modelos de aprendizaje automático o de Machine Learning (ML) para evaluar el estado del mayor. Ya hemos realizado varios modelos que miden la dimensión física del mayor y actualmente nos estamos centrando en la dimensión emocional. Describimos en este trabajo nuestra propuesta tecnológica para el reconocimiento de emociones y detección de problemas de salud emocional. Nuestros modelos son no intrusivos, son flexibles y pueden ayudar a los profesionales de la salud a detectar automáticamente el estado del mayor para programar intervenciones.