Resumen: Towards using Few-Shot Prompt Learning for Automating Model Completion
Fecha
2024-06-17
Editor
Sistedes
Publicado en
Actas de las XXVIII Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2024)
Licencia Creative Commons
Resumen
We propose a simple yet a novel approach to improve completion in domain modeling activities. Our approach exploits the power of large language models by using few-shot prompt learning without the need to train or fine-tune those models with large datasets that are scarce in this field. We implemented our approach and tested it on the completion of static and dynamic domain diagrams. Our initial evaluation shows that such an approach is effective and can be integrated in different ways during the modeling activities.
Descripción
Acerca de Ben Chaaben, Meriem
Palabras clave
Language Models, Few-shot Learning, Prompt Learning, Domain Modeling, Model Completion
Enlace permanente
Página completa del ítem
Notificar un error en este resumen