Resumen:
Towards using Few-Shot Prompt Learning for Automating Model Completion

Fecha

2024-06-17

Editor

Sistedes

Publicado en

Actas de las XXVIII Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2024)

Licencia Creative Commons

Resumen

We propose a simple yet a novel approach to improve completion in domain modeling activities. Our approach exploits the power of large language models by using few-shot prompt learning without the need to train or fine-tune those models with large datasets that are scarce in this field. We implemented our approach and tested it on the completion of static and dynamic domain diagrams. Our initial evaluation shows that such an approach is effective and can be integrated in different ways during the modeling activities.

Descripción

Acerca de Ben Chaaben, Meriem

Palabras clave

Language Models, Few-shot Learning, Prompt Learning, Domain Modeling, Model Completion
Página completa del ítem
Notificar un error en este resumen
Mostrar cita
Mostrar cita en BibTeX
Descargar cita en BibTeX