Resumen: Datos de Sensores de Tráfico Semánticos: La Experiencia en TRAFAIR
Fecha
Editor
Publicado en
Licencia Creative Commons
Resumen
Las ciudades modernas deben hacer frente a problemas urgentes relacionados con los sistemas de transporte, tales como la congestión del tráfico, la seguridad, la contaminación y los efectos en la salud. Para ello, las administraciones públicas han desplegado infraestructuras en las vías de comunicación, como cámaras y sensores para recoger datos sobre las condiciones ambientales y del tráfico. En el caso de los datos de los sensores de tráfico, no sólo los datos en tiempo real son esenciales, sino que los valores históricos también deben conservarse y publicarse. Cuando los datos históricos y en tiempo real de las ciudades inteligentes estén disponibles, ser+AOE posible iniciar un debate conjunto sobre la evolución futura de la ciudad basado en la evidencia. El proyecto TRAFAIR (Understanding Traffic Flows to Improve Air Quality) busca comprender cómo el tráfico afecta a la calidad del aire urbano. Para ello se desarrolla una plataforma para proporcionar datos y predicciones en tiempo real sobre la calidad del aire en varias ciudades de Europa, lo que implica, entre otras tareas, el despliegue de sensores de calidad del aire de bajo coste, la recopilación e integración de datos, el modelado y la predicción, la publicación de datos abiertos y el desarrollo de aplicaciones para usuarios finales y administraciones públicas. Este trabajo se centra explícitamente en el modelado y la anotación semántica de los datos de tráfico. En él presentamos las herramientas y técnicas utilizadas en el proyecto y validamos nuestras estrategias para el modelado de datos y su enriquecimiento semántico en dos ciudades: Módena (Italia) y Zaragoza (España). La evaluación experimental incluida muestra que nuestra aproximación para publicar datos enlazados es eficaz.