Navegación

Búsqueda

Búsqueda avanzada

Resultados de búsqueda para Metaheuristics

Injecting domain knowledge in multi-objective optimization problems:A semantic approach

In the field of complex problem optimization with metaheuristics, semantics has been used for modeling different aspects, such as: problem characterization, parameters, decision-maker’s preferences, or algorithms. However, there is a lack of approaches where ontologies are applied in a direct way into the optimization process, with the aim of enhancing it by allowing the systematic incorporation of additional domain knowledge. This is due to the high level of abstraction of ontologies, which makes them difficult to be mapped into the code implementing the problems and/or the specific operators of metaheuristics. In this paper, we present a strategy to inject domain knowledge (by reusing existing ontologies or creating a new one) into a problem implementation that will be optimized using a metaheuristic. Thus, this approach based on accepted ontologies enables building and exploiting complex computing systems in optimization problems. We describe a methodology to automatically induce user choices (taken from the ontology) into the problem implementations provided by the jMetal optimization framework. With the aim of illustrating our proposal, we focus on the urban domain. Concretely, we start from defining an ontology representing the domain semantics for a city (e.g., building, bridges, point of interest, routes, etc.) that allows defining a-priori preferences by a decision maker in a standard, reusable, and formal (logic-based) way. We validate our proposal with several instances of two use cases, consisting in bi-objective formulations of the Traveling Salesman Problem (TSP) and the Radio Network Design problem (RND), both in the context of an urban scenario. The results of the experiments conducted show how the semantic specification of domain constraints are effectively mapped into feasible solutions of the tackled TSP and RND scenarios. This proposal aims at representing a step forward towards the automatic modeling and adaptation of optimization problems guided by semantics, where the annotation of a human expert can be now considered during the optimization process.

Autores: Cristobal Barba-Gonzalez / Antonio J. Nebro / José García-Nieto / Maria Del Mar Roldan-Garcia / Ismael Navas-Delgado / Jose F Aldana Montes / 
Palabras Clave: Decision Making - domain knowledge - Metaheuristics - multi-objective optimization - Ontology - Semantic web technologies

Una librería para inteligencia de enjambre basada en la programación funcional (Trabajo ya publicado)

En este trabajo presentamos una librerÌa de esqueletos paralelos para manejar metaheurÌsticas basadas en inteligencia de enjambre. La librerÌa está implementada utilizando el lenguaje de programación funcional paralelo Eden, una extensión del lenguaje funcional Haskell. Gracias al orden superior presente en el lenguaje funcional, se simplifican las tareas de desarrollar código genérico, facilitando también la comparación entre distintas metaheurÌsticas.

Autores: Fernando Rubio / Alberto de la Encina / Pablo Rabanal / Ismael Rodríguez / 
Palabras Clave: functional programming - Metaheuristics - Parallel programming

On the use of developers context for automatic refactoring of software anti-patterns

Publication: Journal of Systems and Software Number: Available On-line Month and Year: May 2016 DOI: 10.1016/j.jss.2016.05.042 Quality indicators of the journal: ISI JCR IF=1.424 (Q1 in CS/SE, Q2 in CS/TM), 5-year IF=1.767, SNIP=2.415, SJR=0.897, CiteScore=2.93 Citations (according to Google Scholar): 4

Autores: Rodrigo Morales / Zéphyrin Soh / Foutse Khomh / Giuliano Antoniol / Francisco Chicano / 
Palabras Clave: Anti-patterns - Automatic refactoring - Interaction traces - Metaheuristics - Software maintenance - Task context

No encuentra los resultados que busca? Prueba nuestra Búsqueda avanzada