Navegación

Búsqueda

Búsqueda avanzada

A Hybrid Reliability Metric for SLA Predictive Monitoring

Modern SLA management includes SLA prediction based on data collected during service operations. Besides overall accuracy of a prediction model, decision makers should be able to measure the reliability of individual predictions before taking important decisions, such as whether to renegotiate an SLA. Measures of reliability of individual predictions provided by machine learning techniques tend to depend strictly on the technique chosen and to neglect the features of the system generating the data used to learn a model, i.e., the service provisioning landscape in this case. In this paper, we define a hybrid measure of reliability of an individual SLA prediction for classification models, which accounts for both the reliability of the chosen prediction technique, if available, and features capturing the variability of the service provisioning scenario. The metric is evaluated empirically using SLAs and event logs of a real world case.

This paper was presented in ACM Symposium on Applied Computing (SAC) in April 2019 (GGS Class 2).

Towards a general architecture for predictive monitoring of business processes

Process mining allows the extraction of useful information from event logs and historical data of business processes. This information will improve the performance of these processes and is generally obtained after they have finished. Therefore, predictive monitoring of business process running instances is needed, in order to provide proactive and corrective actions to improve the process performance and mitigate the possible risks in real time. This monitoring allows the prediction of evaluation metrics for a runtime process. In this context, this work describes a general methodology for a business process monitoring system for the prediction of process performance indicators and their stages, such as, the processing and encoding of log events, the calculation of aggregated attributes or the application of a data mining algorithm.