Búsqueda avanzada

Resultados de búsqueda para reverse engineering

GEML: A grammar-based evolutionary machine learning approach for design-pattern detection

Design patterns (DPs) are recognised as a good practice in software development. However, the lack of appropriate documentation often hampers traceability, and their benefits are blurred among thousands of lines of code. Automatic methods for DP detection have become relevant but are usually based on the rigid analysis of either software metrics or specific properties of the source code. We propose GEML, a novel detection approach based on evolutionary machine learning using software properties of diverse nature. Firstly, GEML makes use of an evolutionary algorithm to extract those characteristics that better describe the DP, formulated in terms of human-readable rules, whose syntax is conformant with a context-free grammar. Secondly, a rule-based classifier is built to predict whether new code contains a hidden DP implementation. GEML has been validated over five DPs taken from a public repository recurrently adopted by machine learning studies. Then, we increase this number up to 15 diverse DPs, showing its effectiveness and robustness in terms of detection capability. An initial parameter study served to tune a parameter setup whose performance guarantees the general applicability of this approach without the need to adjust complex parameters to a specific pattern. Finally, a demonstration tool is also provided.

Autores: Rafael Barbudo Lunar / Aurora Ramírez / Francisco Servant / José Raúl Romero / 
Palabras Clave: Associative classification - Design pattern detection - Grammar-guided genetic programming - Machine Learning - reverse engineering

A decision-making support system for Enterprise Architecture Modelling

Companies are increasingly conscious of the importance of Enterprise Architecture (EA) to represent and manage IT and business in a holistic way. EA modelling has become decisive to achieve models that accurately represents behaviour and assets of companies and lead them to make appropriate business decisions. Although EA representations can be manually modelled by experts, automatic EA modelling methods have been proposed to deal with drawbacks of manual modelling, such as error-proneness, time-consumption, slow and poor re-adaptation, and cost. However, automatic modelling is not effective for the most abstract concepts in EA like strategy or motivational aspects. Thus, companies are demanding hybrid approaches that combines automatic with manual modelling. In this context there are no clear relationships between the input artefacts (and mining techniques) and the target EA viewpoints to be automatically modelled, as well as relationships between the experts’ roles and the viewpoints to which they might contribute in manual modelling. Consequently, companies cannot make informed decisions regarding expert assignments in EA modelling projects, nor can they choose appropriate mining techniques and their respective input artefacts. This research proposes a decision support system whose core is a genetic algorithm. The proposal first establishes (based on a previous literature review) the mentioned missing relationships and EA model specifications. Such information is then employed using a genetic algorithm to decide about automatic, manual or hybrid modelling by selecting the most appropriate input artefacts, mining techniques and experts. The genetic algorithm has been optimized so that the system aids EA architects to maximize the accurateness and completeness of EA models while cost (derived from expert assignments and unnecessary automatic generations) are kept under control.

Autores: Ricardo Pérez-Castillo / Francisco Ruiz / Mario Piattini / 
Palabras Clave: ArchiMate - Enterprise Architecture - Genetic algorithm - reverse engineering - Viewpoint

Towards a model-driven engineering solution for language independent mutation testing

Mutation testing is a technique to assess test suite adequacy to distinguish between correct and incorrect programs. Mutation testing applies one or more small changes to a program to obtain variants called mutants. The adequacy of a test suite is measured by determining how many of the mutants it distinguishes from the original program. There are many works about mutation testing, but the existing approaches focus on a specific programming language, and usually, it is not easy to customize the set of mutation operators. In this paper, we present Wodel-Test, an extension of the Wodel tool that implements a language-independent mutation testing framework based on model-driven engineering principles.

Autores: Pablo Gómez-Abajo / Esther Guerra / Juan de Lara / Mercedes G. Merayo / 
Palabras Clave: Domain Specific Languages - model mutation - Model-Driven Engineering - Mutation testing - reverse engineering

No encuentra los resultados que busca? Prueba nuestra Búsqueda avanzada