Navegación

Búsqueda

Búsqueda avanzada

The MegaM@Rt2 ECSEL Project: MegaModelling at Runtime — Scalable Model-based Framework for Continuous Development and Runtime Validation of Complex Systems

A major challenge for the European electronic components and systems (ECS) industry is to increase productivity and reduce costs while ensuring safety and quality. Model-Driven Engineering (MDE) principles have already shown valuable capabilities for the development of ECSs but still need to scale to support real-world scenarios implied by the full deployment and use of complex electronic systems, such as Cyber-Physical Systems, and real-time systems. Moreover, maintaining efficient traceability, integration and communication between fundamental stages of the development lifecycle (i.e., design time and runtime) is another challenge to the scalability of MDE tools and techniques. This paper presents «MegaModelling at runtime — Scalable model-based framework for continuous development and runtime validation of complex systems» (MegaM@Rt2), an ECSEL–JU project whose main goal is to address the above mentioned challenges. Driven by both large and small industrial enterprises, with the support of research partners and technology providers, MegaM@Rt2 aims to deliver a framework of tools and methods for: (i) system engineering/design and continuous development,(ii) related runtime analysis, and (iii) global model and traceability management.

A characterisation of reliability tools for Software Defined Networks (Trabajo original)

Software Defined Network (SDN) is a new paradigm in networking that introduces great flexibility, allowing the dynamic configuration of parts of the network through centralised programming. SDN has been successfully applied in field networks, and is now being applied to wireless and mobile networks, generating Software Defined Mobile/Wireless networks (SDWNs). SDN can be also combined with Network Function Virtualization (NFV) producing a software network in which the specific hardware is replaced by general purpose computing equipment running SDN and NFV software solutions. This highly programmable and flexible network introduces many challenges from the point of view of reliability (or robustness), and operators need to ensure the same level of confidence as in previous, less flexible deployments. This paper provides a first study of the current tools used to analyse the reliability of SDNs before deployment and/or during the exploitation of the network. Most of these tools offer some kind of automatic verification, supported by algorithms based on formal methods, but they do not differentiate between fixed and mobile/wireless networks. In the paper we provide a number of classifications of the tools to make this selection easier for potential users, and we also identify promising research areas where more effort needs to be made.